Answer:
4033
Step-by-step explanation:
An easy way to solve this problem is to notice the numerator, 2017^4-2016^4 resembles the special product a^2 - b^2. In this case, 2017^4 is a^2 and 2016^4 is b^2. We can set up equations to solve for a and b:
a^2 = 2017^4
a = 2017^2
b^2 = 2016^4
b = 2016^2
Now, the special product a^2 - b^2 factors to (a + b)(a - b), so we can substitute that for the numerator:
<h3>

</h3>
We can notice that both the numerator and denominator contain 2017^2 + 2016^2, so we can divide by
which is just one, and will simplify the fraction to just:
2017^2 - 2016^2
This again is just the special product a^2 - b^2, but in this case a is 2017 and b is 2016. Using this we can factor it:
(2017 + 2016)(2017 - 2016)
And, without using a calculator, this is easy to simplify:
(4033)(1)
4033
Answer:
837150
/7
Step-by-step explanation:
459(
569
/7
)+997
=
830171
/7
+997
=
837150
/7
17. Area of triangle: 1/2bh
1/2 * 12 * 15
1/2 * 180
=90 cm^2
18. Area of trapezoid: 1/2 h (b1 + b2)
1/2 * 8 ( 12 + 15.4)
4 * 27.4
= 109.6 cm^2
If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity. The sum of the multiplicities is the degree
Answer:
You have to have the graph to answer it.
Step-by-step explanation: