To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by

Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,


We know as well by definition that

Then we have for the statement that


Replacing the previous data


Solving to get h,

Therefore the change is



Therefore te change in the height of the water in the tank is 0.37mm
Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.
Answer:
7.35 J
Im assuming, upon answering the question, that the gravity in this scenario is 9.8? As 9.8 is the gravitational force upon the earth.
The impulse imparted to the shells equals the change in the momentum:
Fav*(Delta t)= Delta m*v.
The mass change is
Delta m= n*m= (89.9shells)*(88.7g)=7.97Kg
So the average force is
F=((v)*(Delta m))/t= ((929)*(7.97))/4.84=1529.78 N
Since the velocity of the shells is much greater than the velocity of the helicopter, there is no need to use relative velocity.