Answer:
0.393 mol/L.
Explanation:
The following data were obtained from the question:
Number of mole of NaOH = 0.550 mol
Volume of solution = 1.40 L
Molarity of NaOH =.?
Molarity of a solution is simply defined as the mole of solute per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the molarity of the NaOH solution as follow:
Number of mole of NaOH = 0.550 mol
Volume of solution = 1.40 L
Molarity of NaOH =.?
Molarity = mole / Volume
Molarity of NaOH = 0.55 / 1.4
Molarity of NaOH = 0.393 mol/L
Thus, the molarity of the NaOH solution is 0.393 mol/L.
<span>Mixing magnesium and aluminum together produces an excellent lightweight material from which to make airplane parts. This type of mixture is called an alloy.
Alloy is a mixture of two elements, one of which is a metal.
</span>
Answer:
Take E(alpha particle energy) = 5.5 MeV (5.5x106x1.6x10-19)
If the charge on the lead nucleus is +82e(atomic number of lead is 82) = +82x1.6x10-19 C and the charge on the alpha particle is +2e = 2x1.6x10-19 C
Using dc = (1/4πεo)qQ/Eα we have
dc = [9x10^9x(2x1.6x10-19x82x1.6x10-19)]/5.5x10-13 = 6.67x10^-13m. = 6.67 x 10^-13 x 10^15 = 6.67 x 10^2fm
Note: 1meter = 10^15fentometer
Explanation:
This is well inside the atom but some eight nuclear diameters from the centre of the lead nucleus.
It seems that you have missed the necessary table for us to answer this question, so I had to look for it. Anyway, here is the answer. <span>Based on Table S, an atom of the element POLONIUM has the weakest attraction for electrons in a chemical bond. Hope this answers your question.</span>
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K