<span>From left to right:
1) starts at high pH, no buffer zone - strong base being titrated with strong acid
2) starts at low pH, no buffer zone - strong acid being titrated with strong base
3) starts at low pH, shows a buffer zone - weak acid titrated with strong base
4) starts at high pH, shows a buffer zone - weak base titrated with strong acid
5) polyprotic due to two equivalence points
</span>
Answer:
Handpicking right?
It is a very simple and easy method of separation. It doesn't require any kind of equipment to proceed. It takes very less time when performed for small quantity of mixture. It doesn't require any kind of preparation
Answer:
(a) > (d) > (c) > (b)
Explanation:
Acidic character is based upon inductive effect of the functional group that are attached to parent chain.
1. Nitro is a -I group which makes phenol acidic due to increased resonance, 2. bromine is a -I group but it is weaker than nitro group
3. phenol is more acidic than cyclohexanol due to resonance stabilization of resonance and among halogen F>Cl>Br>I is the order of acidity
4. cyclohexanol will be weakest as it is not associated with any -I groups here.
so the order of acidity will be
(a). 4-nitropheno > (d). 4-bromophenol > (c). 2,6-difluorocyclohexanol > (b). cyclohexanol
Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.