<h2>Answer:</h2><h3>Part 1:</h3>
Location the element zinc (Zn) on the periodic table:
- Group number : 12
- Period number : 4
- Block : d block
- Element : Transition elements.
<h3>Part 2:</h3>
Protons in an atom of Zn: 30
<h3>Part 3:</h3>
Electrons in a Zn atom: 30
<h3>Part 4 :</h3>
Neutron in an atom of Zn: 35
<h3 />
Answer: First subtract 32 degrees, then multiply the result by 5/9 (0.556 on a calculator). For example, suppose a thermometer reads 68 degrees Fahrenheit. Subtract 32 from 68, leaving 36. Multiply 36 by 5/9, which equals 20 degrees Celsius.
Explanation:
Answer:
Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. ...
Physical state of the reactants and surface area. ...
Temperature. ...
Presence of a catalyst.
Explanation:
Five factors typically affecting the rates of chemical reactions will be explored in this section: the chemical nature of the reacting substances, the state of subdivision (one large lump versus many small particles) of the reactants, the temperature of the reactants, the concentration of the reactants
Answer:
1.208x10⁻³M and 392.5ppm La(NO3)3
Explanation:
The reaction that occurs is:
La2O3 + 6HNO3 → 2La(NO3)3 + 3H2O
Molarity is defined as the moles of solute (In this case, LaO3) per liter of solution. And ppm, are mg of solute per liter of solution.
To solve this question we must find the moles of La(NO3)3 produced and its mass in milligrams to find molarity and ppm:
<em>Moles La2O3 -Molar mass: 325.81g/mol-</em>
0.1968g * (1mol / 325.81g) = 6.04x10⁻⁴ moles La2O3
<em>Moles La(NO3)3:</em>
6.04x10⁻⁴ moles La2O3 * (2mol La(NO3)3 / 1mol La2O3) = 1.208x10⁻³ moles La(NO3)3
<em>Molarity:</em>
1.208x10⁻³ moles La(NO3)3 / 1L =
<h3>1.208x10⁻³M</h3>
<em>Mass La(NO3)3 -Molar mass: 324.92g/mol-</em>
1.208x10⁻³ moles La(NO3)3 * (324.92g / mol) = 0.392.5g La(NO3)3
In mg:
392.5mg La(NO3)3 / 1L =
392.5ppm La(NO3)3