The balanced chemical reaction describing this decomposition is as follows:
<span>4c3h5n3o9 .............> 6N2 + 12CO2 +10H2O + O2
From the periodic table:
mass of oxygen = 16 grams
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of carbon = 12 grams
Therefore:
mass of </span><span>C3H5N3O9 = 3(12) + 5(1) + 3(14) + 9(16) = 227 grams
mass of O2 = 2(16) = 32 grams
From the balanced chemical equation:
4(227) = 908 grams of </span>C3H5N3O9 produce 32 grams of O2. Therefore, to know the amount of oxygen produced from 4.5*10^2 grams <span>C3H5N3O9, all we need to do is cross multiplication as follows:
amount of oxygen = (4.5*10^2*32) / (908) = 15.859 grams</span>
QPOE Files
The x-ray data are stored in QPOE files (Quick Position-Ordered Events, *.qp) rather than image arrays. These are lists of photons identified by several quantities, including the position on the detector, pulse height, and arrival time. Note that, unlike IRAF images, QPOE files have no associated header file, and are always stored in the current directory, unless explicitly specified otherwise. Non-PROS IRAF tasks can also access QPOE data files in place of image arrays.
Answer:
B
Explanation:
And, water is called the "universal solvent" because it dissolves more substances than any other liquid. This allows the water molecule to become attracted to many other different types of molecules.