See the picture attached to better understand the problem
we know that
If two secant segments are drawn to a <span>circle </span><span>from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment.
</span>so
jl*jk=jn*jm------> jn=jl*jk/jm
we have
<span>jk=8,lk=4 and jm=6
</span>jl=8+4----> 12
jn=jl*jk/jm-----> jn=12*8/6----> jn=16
the answer isjn=16
Answer:
Step-by-step explanation:
Yes because 6 is 1/2 of 12
X = larger number, y = smaller number
x = 5y
x - y = 36
5y - y = 36
4y = 36
y = 36/4
y = 9
x = 5y
x = 5(9)
x = 45
ur numbers are 45 and 9 <==
Since B is perpendicular to A. We can say that the gradient of B will be -1/7 (product of the gradients of 2 perpendicular lines has to be -1).
Now we know that the equation for B is y=-(1/7)x + c with c being the y intercept.
Since the point isnt specified in the question, we could leave the equation like this.
But if there is a given point that B passes through, just plug in the x and y values into their respective places and solve to find c. That should give you the equation for b.
Now, to find the solution of x, we have 2 equations:
1) y=7x+12
2)y=-(1/7)x+c
In this simultaneous equation we see that y is equal to both the expressions. So,
7x+12=-(1/7)x+c
Now, since the value of c is not found, we cannot actually find the value of x, but if we would find c, we could also find x since it would only be a matter of rearranging the equation.
And there you go, that is your solution :)