Answer:
120 white individuals
30 yellow individuals
10 green individuals
Explanation:
Available data:
- Dominant epistasis: Phenotypic frequencies 12:3:1
- W allele codes for a dominant white phenotype
- w allele codes for a colored squash
- Y allele codes for a dominant yellow phenotype
- y allele codes for a recessive green phenotype
- W allele will always mask the phenotype produced by Y or y alleles
Dihybrid Cross
Parental) WwYy x WwYy
Gametes) WY Wy wY wy
WY Wy wY wy
Punnet Square)
WY Wy wY wy
WY WWYY WWYy WwYY WwYy
Wy WWYy WWyy WwYy Wwyy
wY WwYY WwYy wwYY wwYy
wy WwYy Wwyy wwYy wwyy
F1 Phenotypic Frequency)
White phenotype: 12/16 = 120 individuals
Yellow phenotype: 3/16 = 30 individuals
Green Phenotype: 1/16 = 10 individuals
To know how many offspring are expected to have the white, yellow, and green phenotypes, you can perform a three simple rule. This is:
16 ------- 160 offspring
12 White ------- X = 120 offspring
3 Yellow ------- X= 30 offspring
1 Green --------X = 10 offspring
Answer:
Eucarya
Explanation:
Human taxonomy is the classification of the human species (systematic name Homo sapiens, Latin: "wise man") within zoological taxonomy. The systematic genus, Homo, is designed to include both anatomically modern humans and extinct varieties of archaic humans.
Hope it helps!
I believe that classical conditioning is a type of learning in which a neutral stimulus comes to elicit a response after being paired with a stimulus that would elicit the same response naturally. It is where a conditioned stimulus becomes associated with an unrelated unconditioned stimulus in order to produce a behavioral response which is referred to as a conditioned response.