Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The correct statement should be the below:
Research suggests that the health benefits of phytochemicals are most prevalent when phytochemicals are consumed in dietary <span>supplement form.</span>
Considering the ideal gas law, there are 279.42 moles of acetylene in the tank.
<h3>Definition of ideal gas</h3>
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
<h3>Ideal gas law</h3>
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of gases:
P×V = n×R×T
<h3>Moles of acetylene</h3>
In this case, you know:
- P= 1765 kPa= 17.4192 atm (being 101.325 kPa= 1 atm)
- V= 390 L
- n= ?
- R= 0.082

- T= 23.5 °C= 296.5 K (being 0 °C= 273 K)
Replacing in the ideal gas law:
17.4192 atm× 390 L = n×0.082
× 296.5 K
Solving:

<u><em>n= 279.42 moles</em></u>
Finally, there are 279.42 moles of acetylene in the tank.
Learn more about ideal gas law:
brainly.com/question/4147359
Answer:
Explanation:
From the information given:
Step 1:
Determine the partial pressure of each gas at total Volume (V) = 4.0 L
So, using:





![Total pressure= P [N_2] + P[Ar] \ \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (0.525 + 1.7)Bar \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2.225 \ Bar](https://tex.z-dn.net/?f=Total%20pressure%3D%20P%20%5BN_2%5D%20%2B%20P%5BAr%5D%20%5C%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%20%280.525%20%2B%201.7%29Bar%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%202.225%20%5C%20Bar)
Now, to determine the final pressure using different temperature; to also achieve this, we need to determine the initial moles of each gas.
According to Ideal gas Law.

For moles N₂:



For moles of Ar:





Finally;
The final pressure of the mixture is:

P = 2.217 atm
P ≅ 2.24 bar