Viscosity is related to the parallel shear force acted by the fluid. In lay man's term, viscosity is the ease of how the fluid flows. The faster the flow is, the lower the viscosity (and vice versa). On the other hand, osmolarity pertains to the concentration of a component in a mixture expressed in number of solute particles per liter of the mixture.
Answer:
A solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.
Explanation:
A percentage is a way of expressing an amount as a fraction of 100. The mass percentage corresponds to physical units of the solutions and they allow to establish more precisely the concentration of the solutions and express them in terms of percentages.
Mass percentage indicates the amount in grams of solute per 100 grams of solution.
So a solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.
What lol I am just answering so I can get points :)
Answer:
0.76 mole of Fe2S3.
Explanation:
Step 1:
Determination of the number of mole in 449g iron(III)bromide, FeBr3. This is illustrated below:
Mass of FeBr3 = 449g
Molar mass of FeBr3 = 56 + (80x3) = 296g/mol
Mole of FeBr3 =..?
Mole = Mass /Molar Mass
Mole of FeBr3 = 449/296
Mole of FeBr3 = 1.52 moles
Step 2:
The balanced equation for the reaction. This is given below:
2FeBr3 + 3Na2S —> 6NaBr + Fe2S3
Step 3:
Determination of the number of mole of Fe2S3 produced from the reaction of 449g ( i.e 1.52 moles) of FeBr3. This is illustrated below:
From the balanced equation above,
2 moles of FeBr3 reacted to produce 1 mole of Fe2S3.
Therefore, 1.52 moles of FeBr3 will react to produce = (1.52 x 1)/2 = 0.76 mole of Fe2S3.
Therefore, 0.76 mole of Fe2S3 is produced from the reaction.
This is called a dynamic equilibrium. Therefore, the reaction is constantly going, but the amount of the reactants and products stay the same for they are both reacting at the same rate. So the answer is 4).