Answer:
IM PRETTY POSITIVE ITS B
PLS MARK BRAINLIEST
SORRY IF IM WRONG :P
Step-by-step explanation:
Answer:
a. The percentage of vehicles who pass through this construction zone who are exceeding the posted speed limit =90.82%
b. Percentage of vehicles travel through this construction zone with speeds between 50 mph and 55 mph= 2.28%
Step-by-step explanation:
We have to find
a) P(X>40)= 1- P(x=40)
Using the z statistic
Here
x= 40 mph
u= 44mph
σ= 3 mph
z=(40-44)/3=-1.33
From the z-table -1.67 = 0.9082
a) P(X>40)=
Probability exceeding the speed limit = 0.9082 = 90.82%
b) P(50<X<55)
Now
z1 = (50-44)/3 = 2
z2 = (55-44)/3= 3.67
Area for z>3.59 is almost equal to 1
From the z- table we get
P(55 < X < 60) = P((50-44)/3 < z < (55-44)/3)
= P(2 < z < 3.67)
= P(z<3.67) - P(z<2)
= 1 - 0.9772
= 0.0228
or 2.28%
Turn fraction into a decimal.
-2 1/2 = -2.5
Remember that when you subtract a negative number it automatically changes it to adding a positive number.
-6 + 2.5 = -3.5
Hope This Helped! Good Luck!
Answer:
O It has the same slope and a different y-intercept.
Step-by-step explanation:
y = mx + b
m = 3/8
b = 12
y = (3/8)x + 12
---
Data in the table: slope is the rise (y) over the run (x) between two points (assuming the data represent a linear line).
Change in x and y between two points. I'll choose (-2/3,-3/4) and (1/3,-3/8).
Change in y: (-3/8 - (-3/4)) = (-3/8 - (-6/8)) = 3/8
Change in x: (1/3 - (-2/3)) = (1/3+2/3) = 3/3 = 1
Slope = (Change in y)/(Change in x) = (3/8)/1 = 3/8
The slope of the equation is the same as the data in the table.
Now let's determine if the y-intercept is also the same (12). The equation for the data table is y = (2/3)x + b, and we want to find b. Enter any of the data points for x and y and then solve for b. I'll use (-2/3, -3/4)
y = (3/8)x + b
Use (-2/3, -3/4)
-3/4 =- (3/8)(-2/3) + b
-3/4 = (-6/24) + b
b = -(3/4) + (6/24)
b = -(9/12) + (3/12)
b = -(6/12)
b = -(1/2)
The equation of the line formed by the data table is y = (3/8)x -(1/2)
Therefore, It has the same slope and a different y-intercept.