Explanation:
Here we will apply the law of conservation of momentum which is one of the powerful laws of physics. As this law states that the "if no external forces are acting on the system then the net momentum of the system before and after must remain conserved. As the astronaut has a hammer, if he throws it in the direction opposite of his space craft, he will automatically move towards the space craft to conserve the momentum. That's how he can reach the space craft easily by throwing away the hammer.
the atomic number of a chemical element (also known as its proton number) is the number of protons found in the nucleus of an atom of that element, and therefore identical to the charge number of the nucleus.
Hope this helped
Answer:
a) W = 46.8 J and b) v = 3.84 m/s
Explanation:
The energy work theorem states that the work done on the system is equal to the variation of the kinetic energy
W = ΔK =
-K₀
a) work is the scalar product of force by distance
W = F . d
Bold indicates vectors. In this case the dog applies a force in the direction of the displacement, so the angle between the force and the displacement is zero, therefore, the scalar product is reduced to the ordinary product.
W = F d cos θ
W = 39.0 1.20 cos 0
W = 46.8 J
b) zero initial kinetic language because the package is stopped
W -
=
-K₀
W - fr d= ½ m v² - 0
W - μ N d = ½ m v
on the horizontal surface using Newton's second law
N-W = 0
N = W = mg
W - μ mg d = ½ m v
v² = (W -μ mg d) 2/m
v = √(W -μ mg d) 2/m
v = √[(46.8 - 0.30 4.30 9.8 1.20) 2/4.3
]
v = √(31.63 2/4.3)
v = 3.84 m/s