1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
3 years ago
10

In your textbook reading Chapter 26, the author suggests that an electric vehicle (EV) fleet can be used as a kind of distribute

d energy storage strategy. He assumes 1/3 of EVs might contribute 20% of their storage capacity to this scheme. The US has ~270 million registered vehicles. A recent paper has suggested that the US could generate ALL of its electricity from wind and solar, provided that there is 12 hours worth of storage for the whole country. The US generated 4,015 billion kWh in 2017, so an average 12-hr chunk of supply is 5.5 billion kWh. If we all drove EVs with batteries as in problem 3, could this distributed EV scheme provide the energy storage we require to live on just solar and wind? Show your calculaltions
Physics
1 answer:
d1i1m1o1n [39]3 years ago
8 0

Answer:

Answer for the question is given in the attachment.

Explanation:

Download pdf
You might be interested in
Need help with 2 and 3<br>pls help, due in 1 1/2 hours<br>(GIVING 20 POINTS)​
Anarel [89]
2) acceleration = final velocity - initial velocity / time —> V-U/T
Acceleration is the change in velocity over the change in time so it can be represented by the equation a = Δv/Δt.
3) first one- F=10.5 N
second one- 4 m/s^2
third one- 1200N
7 0
3 years ago
Which statement is true about a planet’s orbital motion?
lana66690 [7]

Answer:

Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

Explanation:

The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.

When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.

The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.

The velocity of the orbit is given by the relation,

                                    V = \sqrt{\frac{GM}{R + h} }

Where

                   V - velocity of the orbit at a height h from the surface

                    R - Radius of the second object

                    G - Gravitational constant

                    h - height from the surface

The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

                         1/2 mV^{2} = GMm/R

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

3 0
3 years ago
g A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
sdas [7]

Answer:

The vertical distance is  d = \frac{2}{k} *[mg + f]

Explanation:

From the question we are told that

   The mass of the cylinder is  m

    The kinetic frictional force is  f

Generally from the work energy theorem

    E  =  P +  W_f

Here E the the energy of the spring which is increasing and this is mathematically represented as

       E =  \frac{1}{2} * k  *  d^2

Here k is the spring constant

        P is the potential energy of the cylinder which is mathematically represented as

     P  = mgd

And

     W_f  is the workdone by friction which is mathematically represented as

      W_f  =  f *  d

So

    \frac{1}{2} * k  *  d^2 =  mgd +  f *  d

=>    \frac{1}{2} * k  *  d^2 =  d[mg +  f    ]

=>  \frac{1}{2} * k  *  d =  [mg +  f    ]

=> d = \frac{2}{k} *[mg + f]

5 0
3 years ago
A student pushes a 0.2 kg box against a spring causing the spring to compress 0.15 m. When the spring is released, it will launc
german

Answer:

The maximum height the box will reach is 1.72 m

Explanation:

F = k·x

Where

F = Force of the spring

k = The spring constant = 300 N/m

x  = Spring compression or stretch = 0.15 m

Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N

Mass of box = 0.2 kg

Work, W, done by the spring = \frac{1}{2} kx^2 and the kinetic energy gained by the box is given by KE = \frac{1}{2} mv^2

Since work done by the spring = kinetic energy gained by the box we have

\frac{1}{2} mv^2 =  \frac{1}{2} kx^2  therefore we have v = \sqrt{\frac{kx^2}{m} } = x\sqrt{\frac{k}{m} } = 0.15\sqrt{\frac{300}{0.2} } = 5.81 m/s

Therefore the maximum height is given by

v² = 2·g·h or h = \frac{v^2}{2g} = \frac{5.81^{2} }{2*9.81} = 1.72 m

6 0
3 years ago
Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
kondor19780726 [428]

Answer:

m1/m2 = 0.51

Explanation:

First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:

V = √F/u

This is the equation that describes the relation between speed of a pulse and a force exerted on it.

the value of "u" is:

u = m/L

Where m is the mass of the rod, and L the length.

Now, for the rod 1:

V1 = √F/u1 (1)

rod 2:

V2 = √F/u2 (2)

Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:

1.4V2 = √F/u1 (3)

Replacing (2) in (3):

1.4(√F/u2) = √F/u1 (4)

Now, let's solve the equation 4:

[1.4(√F/u2)]² = F/u1

1.96(F/u2) =F/u1

1.96F = F*u2/u1

1.96 = u2/u1 (5)

Now, replacing the expression of u into (5) we have the following:

1.96 = m2/L / m1/L

1.96 = m2/m1 (6)

But we need m1/m2 so:

1.96m1 = m2

m1/m2 = 1/1.96

m1/m2 = 0.51

5 0
3 years ago
Other questions:
  • What must be the acceleration of a train in order for it to stop from 12m/s in a distance of 541m?
    13·2 answers
  • Wires 1, 2, and 3 each have current moving through them to the right. I1 = 10 A, I2 = 5 A, and I3 = 8 A. Wire 2 is 15 cm long an
    13·1 answer
  • A 13,900 N car traveling at 40.0 km/h rounds a curve of radius 1.80 ✕ 102 m.
    11·1 answer
  • 7. If a hot spoon is placed in a glass of cold
    11·1 answer
  • How could the action force of a canoe moving through water be increased?
    13·2 answers
  • To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 900 loops o
    5·1 answer
  • A body weighing 250 grams was dropped from a helicopter flying at an altitude of 100 meters. Determine the potential energy of t
    11·1 answer
  • What type of material is thought to explain the larger size of the outer planets relative to the inner planets
    6·1 answer
  • Which famous astronomer discovered jupiter’s largest moons?.
    15·1 answer
  • I need help! Thank you.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!