PV = nRT
P: pressure of gas
V: volume of gas
n: number of moles of gases
R: constant
T: thermodynamic temperature of gas
All the statements apply
Hope it helped!
Answer:
7&8 both true
9 is false
Step-by-step explanation:
tghdhfshj
we know that
For a spherical planet of radius r, the volume V and the surface area SA is equal to
![V=\frac{4}{3} *\pi *r^{3} \\ \\ SA=4*\pi *r^{2}](https://tex.z-dn.net/?f=%20V%3D%5Cfrac%7B4%7D%7B3%7D%20%2A%5Cpi%20%2Ar%5E%7B3%7D%20%5C%5C%20%5C%5C%20SA%3D4%2A%5Cpi%20%2Ar%5E%7B2%7D%20%20)
The
ratio of these two quantities may be written as
![SAV =\frac{(4*\pi*r^{2})}{(\frac{4}{3}*\pi*r^{3})} \\ \\ SAV =\frac{3}{r}](https://tex.z-dn.net/?f=%20SAV%20%3D%5Cfrac%7B%284%2A%5Cpi%2Ar%5E%7B2%7D%29%7D%7B%28%5Cfrac%7B4%7D%7B3%7D%2A%5Cpi%2Ar%5E%7B3%7D%29%7D%20%20%20%20%20%5C%5C%20%20%5C%5C%20SAV%20%3D%5Cfrac%7B3%7D%7Br%7D%20%20)
we know
![rMoon=1,738Km\\ rMars=3,397 Km](https://tex.z-dn.net/?f=%20rMoon%3D1%2C738Km%5C%5C%20rMars%3D3%2C397%20Km%20)
![\frac{SAV Moon}{SAV Mars} =\frac{3}{rMoon} *\frac{rMars}{3} \\ \\ \frac{SAV Moon}{SAV Mars} =\frac{rMars}{rMoon} \\ \\ \frac{SAV Moon}{SAV Mars} =\frac{3,397}{1,738} \\ \\ \frac{SAV Moon}{SAV Mars} =1.9545](https://tex.z-dn.net/?f=%20%5Cfrac%7BSAV%20Moon%7D%7BSAV%20Mars%7D%20%3D%5Cfrac%7B3%7D%7BrMoon%7D%20%2A%5Cfrac%7BrMars%7D%7B3%7D%20%5C%5C%20%5C%5C%20%5Cfrac%7BSAV%20Moon%7D%7BSAV%20Mars%7D%20%3D%5Cfrac%7BrMars%7D%7BrMoon%7D%20%5C%5C%20%5C%5C%20%5Cfrac%7BSAV%20Moon%7D%7BSAV%20Mars%7D%20%3D%5Cfrac%7B3%2C397%7D%7B1%2C738%7D%20%5C%5C%20%5C%5C%20%5Cfrac%7BSAV%20Moon%7D%7BSAV%20Mars%7D%20%3D1.9545%20)
therefore
the answer is
![1.9](https://tex.z-dn.net/?f=%201.9%20)
It would be...
(18 +28) divided by two
then take that and multiply it by the height - 5
the 6 in this equation doesn't matter because it is not the height of the shape
I belive its 18cm,,,,,,,,,,,,,,,,,,,,,,,,,,,,