Answer:
![5\sqrt[3]{7}*y^3*x^{\frac{5}{3}}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B7%7D%2Ay%5E3%2Ax%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
Step-by-step explanation:
We are asked to simplify the radical expression:
.
Using exponent rule for radical
we can rewrite our expression as:
![\sqrt[3]{875x^5y^9}=\sqrt[3]{875}*\sqrt[3]{x^5}*\sqrt[3]{y^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B875x%5E5y%5E9%7D%3D%5Csqrt%5B3%5D%7B875%7D%2A%5Csqrt%5B3%5D%7Bx%5E5%7D%2A%5Csqrt%5B3%5D%7By%5E9%7D)
![\sqrt[3]{875}=\sqrt[3]{125*7}=5\sqrt[3]{7}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B875%7D%3D%5Csqrt%5B3%5D%7B125%2A7%7D%3D5%5Csqrt%5B3%5D%7B7%7D)
Using exponent rules for radical
we will get,
![\sqrt[3]{x^5}=(x^5)^{\frac{1}{3}}=x^{\frac{5}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E5%7D%3D%28x%5E5%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3Dx%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
Using exponent rules for radical
we will get,
![\sqrt[3]{y^9}=(y^9)^3=y^{\frac{9}{3}}=y^3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E9%7D%3D%28y%5E9%29%5E3%3Dy%5E%7B%5Cfrac%7B9%7D%7B3%7D%7D%3Dy%5E3)
Upon substituting these values in our expression we will get,
![\sqrt[3]{x^5}*\sqrt[3]{y^9}=5\sqrt[3]{7}*x^{\frac{5}{3}}*y^3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E5%7D%2A%5Csqrt%5B3%5D%7By%5E9%7D%3D5%5Csqrt%5B3%5D%7B7%7D%2Ax%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2Ay%5E3)
Therefore, our radical expression simplifies to
.