Hello Meggieh821, to find the lim as x approaches 0 we can check this by inserting a number that is close to 0 that is coming from the left and from the right.
For instance, we can find the lim by using the number -.00001 for x and solve
<span>csc(3x) / cot(x)
</span>csc(3*-.00001) / cot(-.00001) = .333333... = 1 /3
We also need to check coming from the right. We will use the number .00001 for x
csc(3x) / cot(x)
csc(3*.00001) / cot(.00001) = .333333... = 1 /3
So since we are getting 1/3 from the left and right we can say as x approaches 0 the limit is 1/3
<span>

</span>
This is easy. You just add all the like terms
Answer:
<h2>
489.84 units³</h2>
Step-by-step explanation:
Given,
Radius ( r ) = 6
Height ( h ) = 13
Volume of cone = ?
Now, Let's find the volume of cone:

plug the values

Evaluate the power

Calculate
units³
Hope this helps..
Best regards!!
Answer:
See below.
Step-by-step explanation:
The rocket's flight is controlled by its initial velocity and the acceleration due to gravity.
The equation of motion is h(t) = ut + 1.2 g t^2 where u = initial velocity, g = acceleration due to gravity ( = - 32 ft s^-2) and t = the time.
(a) h(t) = 64t - 1/2*32 t^2
h(t) = 64t - 16t^2.
(b) The graph will be a parabola which opens downwards with a maximum at the point (2, 64) and x-intercepts at (0, 0) and (4, 0).
The y-axis is the height of the rocket and the x-axis gives the time.
Maximum height = 64 feet, Time to maximum height = 2 seconds, and time in the air = 4 seconds.