The periodicity of function is 
<em><u>Solution:</u></em>
Given that we have to find the period of function
<em><u>Given function is:</u></em>

<em><u>Use the below formula:</u></em>

Thus,

Now find the periodicity of cos(x)
We know that,
periodicity of cos(x) = 
Therefore,

Thus the periodicity of function is 
Answer:
-28a² +19a+5
Step-by-step explanation:
The expression 4a^2c^2 - (a^2-b^2+c^2)^2 has to be factored.
4a^2c^2 - (a^2 - b^2 + c^2)^2
=> (2ac)^2 - (a^2 - b^2 + c^2)^2
=> (2ac - a^2 + b^2 - c^2)(2ac + a^2 - b^2 + c^2)
=> (b^2 - (a^2 - 2ac + c^2))((a^2 + 2ac + c^2) - b^2)
=> (b^2 - (a - c)^2)((a + c)^2 - b^2)
=> (b - a + c)(b + a - c)(a + b + c)(a - b + c)
<span>
The factorized form of 4a^2c^2 - (a^2-b^2+c^2)^2 is (b - a + c)(b + a - c)(a + b + c)(a - b + c)</span>
Oh ok so the answer is .666666666666 etc infinite 6s
Answer: m = 
Step-by-step explanation:
Turn the equation into slope-intercept form: 
Reduce: 
Your parallel slope is: 