I'm only going to alter the left hand side. The right side will stay the same the entire time
I'll use the identity tan(x) = sin(x)/cos(x) and cot(x) = cos(x)/sin(x)
I'll also use sin(x+y) = sin(x)cos(y)+cos(x)sin(y) and cos(x+y) = cos(x)cos(y)-sin(x)sin(y)
So with that in mind, this is how the steps would look:
tan(x+pi/2) = -cot x
sin(x+pi/2)/cos(x+pi/2) = -cot x
(sin(x)cos(pi/2)+cos(x)sin(pi/2))/(cos(x)cos(pi/2)-sin(x)sin(pi/2)) = -cot x
(sin(x)*0+cos(x)*1)/(cos(x)*0-sin(x)*1) = -cot x
(0+cos(x))/(-sin(x)-0) = -cot x
(cos(x))/(-sin(x)) = -cot x
-cot x = -cot x
Identity is confirmed
Answer:
3x(x-1) = 0
x= 1
Step-by-step explanation:
is 3x2 supposed to mean 3x^2 i dont know
lateral area = 2 X pi X r X H
= 2 x 3.14 x 5 x 9 = 282.6
Multiplication comes before any subtraction...so do 10 x 5 first