Answer:
0.4546
Step-by-step explanation:
nCr = n!/(n-r)!r!
Number of ways of selecting the four defective voltage regulators from 12 = 12C4 = 12!/(12-4)!4! = 12!/8!4! = (12 *11*10*9)/(4*3*2*1)
12C4 = 495 ways
Number of ways of selecting 2 defectives from line 1 = 6C2 * 6C2
6C2 = 6!/(6-2)!2! = 6!/4!2! = (6*5)/(2*1) = 15
6C2 * 6C2 = 15*15 = 225 ways
Probability = Number of possible outcomes/ Number of total outcomes
Probability that exactly 2 of the defective regulators came from line 1 = 225/40.95 = 0.4546
Answer:

Step-by-step explanation:
6 symbols and 4-symbol code so number of combinations wich doesn't contain the same symbol twice would be:
6•5•4•3 = 360
If code starts with a star followed by triangle that means only one posibility for first two symbols and code doesn't containing the same symbol twice means that left 4 symbols for next two.
So number of combinations of code starting with a star followed by triangle and doesn't containing the same symbol twice will be:
1•1•4•3 = 12
The probability that a randomly chosen code starts with a star followed by triangle and doesn't contain the same symbol twice:

Answer:
a(-1)^(n-1).
Step-by-step explanation:
This is a Geometric Sequence with common ratio r = -1.
The general term is a(-1)^(n-1).
Answer:
Yes, they are equalent
Step-by-step explanation:
12:14 = 6:7
60:70 =6:7
both can be simplified to 6:7