Answer:
%
Explanation:
The ethanol combustion reaction is:
→
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

Dividing the previous equation by x:

We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

Calculate the number of moles of CO2 and water considering the same:


The total number of moles at the reactor output would be:

So, the oxygen mole fraction would be:
%
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />
Answer:
This law states that the physical and chemical properties of the elements are the periodic function of their atomic masses. This means that when the elements are arranged in the order of their increasing atomic masses, the elements with similar properties recur at regular intervals.
Explanation:
Answer:
4.16g of MgCl2
Explanation:
First, let us generate a balanced equation for the reaction:
Mg + 2HCl —> MgCl2 + H2
Molar Mass of Mg = 24g/mol
Molar Mass of MgCl2 = 24 + (2x35.5) = 24 + 71 = 95g
From the equation,
24g of Mg produced 95g of MgCl2.
Therefore, 1.05g of Mg will produce = (1.05x95)/24 = 4.16g of MgCl2