Answer:
Explanation:
Use the trigonometric ratio definition of the tangent function and the quotient rule.
Quotient rule: the derivative of a quotient is:
- [the denominator × the derivative of the numerator less the numerator × the derivative of the denominator] / [denominator]²
- (f/g)' = [ g×f' - f×g'] / g²
So,
- tan(x)' = [ sin(x) / cos(x)]'
- [ sin(x) / cos(x)]' = [ cos(x) sin(x)' - sin(x) cos(x)' ] / [cos(x)]²
= [ cos(x)cos(x) + sin(x) sin(x) ] / [ cos(x)]²
= [ cos²(x) + sin²(x) ] / cos²(x)
= 1 / cos² (x)
= sec² (x)
The result is that the derivative of tan(x) is sec² (x)
Answer:
A. Both describe ways a solid can change.
Assuming that the reaction from A and C to AC5 is only
one-step (or an elementary reaction) with a balanced chemical reaction of:
<span>A + 5 C ---> AC5 </span>
Therefore the formation constant can be easily calculated
using the following formula for formation constant:
Kf = product of products concentrations / product of reactants
concentration
<span>Kf = [AC5] / [A] [C]^5 </span>
---> Any coefficient from the balanced chemical
reaction becomes a power in the formula
Substituting the given values into the equation:
Kf = 0.100 M / (0.100 M) (0.0110 M)^5
Kf = 6,209,213,231
or in simpler terms
<span>Kf = 6.21 * 10^9 (ANSWER)</span>
If not all of the salt has dissolved then the measurement of the concentration at the time is really inaccurate.
<h3>What is concentration?</h3>
The concentration is the amount of substance that is present in solution. We know that we can not measure the concentration unless all of the solute have been dissolved in the solution.
Thus, if not all of the salt has dissolved then the measurement of the concentration at the time is really inaccurate.
Learn more about concentration:brainly.com/question/10725862
#SPJ1
Answer:
1.15
Explanation:
2SO₂ + O₂ ⟶ 2SO₃; K =1.32
SO₂ + ½O₂ ⟶ SO₃; K₁ = ?
When you divide an equation by 2, you take the square root of its equilibrium constant.
K₁ = √1.32 = 1.15
The equilibrium constant is 1.15.