I believe what you are talking about is the synthesis reaction
1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up elements or molecules making up a compound.
In this case. 1 mol of Li is made of 6.022 x 10²³ atoms of Li
The molar mass of Li is 6.94 g/mol
Therefore mass of 1 mol of Li is 6.94 g
In 6.94 g of Li there are - 6.022 x 10²³ atoms
Then in 766.3 g of Li there are - 6.022 x 10²³ atoms / 6.94 g x 766.3 g = 665 x 10²³
There are 6.65 x 10^25 atoms of Li
Answer:
Groundwater, Glaciers, and Polar Ice.
Explanation:
First, we'll balance the equation
C3H8 + 5O2 --> 3CO2 + 4H2O
Next, we know that a gas at stp occupies 22.4 liters/mole, so we can find the number of moles of oxygen gas.
15 liters O2 * (1 mole O2)/(22.4 liters O2) = 0.67 moles O2
Now we know from our balanced equation that there are 3 moles of CO2 per mole of O2, so we can find the number of moles of CO2 we produce.
0.67 moles O2 * (3 moles CO2/5 moles O2) = 0.40 moles CO2
Now, we have the number of moles of CO2, and we know that one mole occupies 22.4 liters, we can find the number of liters
.40 moles CO2 * (22.4 liters CO2)/(1 mole CO2) = 9.0 liters of CO2
The answer is D
Answer:
The concentration of a saturated solution of CuF₂ in aqueous 0.20 M NaF is 4.0×10⁻⁵ M.
Explanation:
Consider the ICE take for the solubility of the solid, CuF₂ as:
CuF₂ ⇄ Cu²⁺ + 2F⁻
At t=0 x - -
At t =equilibrium (x-s) s 2s
The expression for Solubility product for CuF₂ is:
![K_{sp}=\left [ Cu^{2+} \right ]\left [ F^- \right ]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cleft%20%5B%20Cu%5E%7B2%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20F%5E-%20%5Cright%20%5D%5E2)


Given s = 7.4×10⁻³ M
So, Ksp is:


Ksp = 1.6209×10⁻⁶
Now, we have to calculate the solubility of CuF₂ in NaF.
Thus, NaF already contain 0.20 M F⁻ ions
Consider the ICE take for the solubility of the solid, CuF₂ in NaFas:
CuF₂ ⇄ Cu²⁺ + 2F⁻
At t=0 x - 0.20
At t =equilibrium (x-s') s' 0.20+2s'
The expression for Solubility product for CuF₂ is:
![K_{sp}=\left [ Cu^{2+} \right ]\left [ F^- \right ]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cleft%20%5B%20Cu%5E%7B2%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20F%5E-%20%5Cright%20%5D%5E2)

Solving for s', we get
<u>s' = 4.0×10⁻⁵ M</u>
<u>The concentration of a saturated solution of CuF₂ in aqueous 0.20 M NaF is 4.0×10⁻⁵ M.</u>