Explanation:
Provided <u>2 length sides</u> and <u>one angle</u> also need to find <u>one missing side</u>.
So, use cosine rule:
a² = b² + c² - 2bc cos(A)
<h3><u>Part 1</u></h3>
c² = 9² + 11² - 2(11)(9) cos(57)
c² = 94.16147
c = √94.16147 = 9.70 cm
<h3><u>Part 2</u></h3>
d² = 5² + 7² - 2(5)(7) cos(48)
d² = 27.16
d = √27.16 = 5.21
<h3><u>Part 3</u></h3>
5² = 7² + 9² - 2(7)(9) cos(H)
-126cos(H) = 25 - 49 - 81
cos(H) = -105/-126
cos(H) = 5/6
H = cos⁻¹(5/6) = 33.56°
<h3><u>Part 4</u></h3>
8² = 4² + 7² - 2(4)(7) cos(J)
-56cos(J) = 64 - 16 - 49
cos(J) = -1/-56
J = cos⁻¹(1/56) = 88.98°
Passcode: 3142
Answer:
Difference= $3,090.15 in favor of compounded interest
Step-by-step explanation:
Giving the following information:
Present value (PV)= $8,500
Ineterest (i)= 0.025/12= 0.00208
Number of periods (n)= 360 months
<u>We will calculate the future value of each option and determine the difference:</u>
<u>Simple interest:</u>
FV= (PV*i*n) + PV
FV= (8,500*0.00208*360) + 8,500
FV= $14,864.8
<u>Compounded interest:</u>
FV= PV*(1+i)^n
FV= 8,500*(1.00208^360)
FV= $17,958.95
Difference= $3,090.15
Answer:
(1,0), (0,0),(-2<0)<(-1, -2)
Step-by-step explanation: