- 2(x + 7)
mutiply the bracket by -2
(-2)(x)= -2x
(-2)(7)= -14
Answer:
-2x-14
D
It makes sense. At most means equal or less than. The 10 per hour has a variable.
so the investigator found the skid marks were 75 feet long hmmm what speed will that be?
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ d=75 \end{cases}\implies s=\sqrt{30(0.7)(75)}\implies s\approx 39.69~\frac{m}{h}](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20d%3D75%20%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Csqrt%7B30%280.7%29%2875%29%7D%5Cimplies%20s%5Capprox%2039.69~%5Cfrac%7Bm%7D%7Bh%7D)
nope, the analysis shows that Charlie was going faster than 35 m/h.
now, assuming Charlie was indeed going at 35 m/h, then his skid marks would have been
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ s=35 \end{cases}\implies 35=\sqrt{30(0.7)d} \\\\\\ 35^2=30(0.7)d\implies \cfrac{35^2}{30(0.7)}=d\implies 58~ft\approx d](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20s%3D35%20%5Cend%7Bcases%7D%5Cimplies%2035%3D%5Csqrt%7B30%280.7%29d%7D%20%5C%5C%5C%5C%5C%5C%2035%5E2%3D30%280.7%29d%5Cimplies%20%5Ccfrac%7B35%5E2%7D%7B30%280.7%29%7D%3Dd%5Cimplies%2058~ft%5Capprox%20d)
Answer:
X=1.2
Step-by-step explanation:
i just did that
Answer:
% area of the shaded region = 33%
Step-by-step explanation:
Radius of the middle circle = 7 cm
Radius of the inner circle = 4 cm
Area of the middle circle = πr²
= π(7)²
= 49π
Area of the inner circle = π(4)²
= 16π
Area of the shaded region= 49π - 16π
= 33π
Area of the outermost circle = π(10)²
= 100π
% area of the shaded region = 
= 
= 33%
Therefore, area of the shaded region is 33% of the complete logo.