The product formed when HCl and CH2Cl2 react is CH4
H
H-C- H methane structure
H
HCl react with CH2Cl2 to form methane (CH4) and chlorine gas(Cl2)
that is,
2HCl(g) + CH2Cl2(l) = CH4 (g) +2Cl2 (g)
Answer:
1) The overlap of the p orbitals of the carbon-carbon π bond would be lost
Explanation:
Unlike simple bonds, a double bond can not rotate, since it is not possible to twist the ends of the molecule without breaking the π bond.
In the structure of but-2-ene present in the attachment, we can see the two isomers, <em>cis</em> and<em> trans</em>. These isomers cannot be interconverted by rotation around the carbon-carbon double bond without breaking the π bond.
Explanation:
The property of a substance to resist the flow of motion is known as viscosity. And, more is the density of a substance more will be its viscosity.
Whereas, lesser is the density of a substance then it is easy for the substance to move.
This means that more is the viscosity of a substance least will be its flow and when a substance has lesser viscosity then it will readily flow from one point to another.
Thus, we can conclude that the viscosities of several liquids are being compared. All the liquids are poured down a slope with equal path lengths. The liquid with the highest viscosity will reach the bottom last.
Answer:
Iodide> Bromide > chloride > flouride
Explanation:
During a nucleophilic substitution reaction, a nucleophilie replaces another in a molecule.
This process may occur via an ionic mechanism (SN1) or via a concerted mechanism (SN2).
In either case, the ease of departure of the leaving group is determined by the nature of the C-X bond. The stronger the C-X bond, the worse the leaving group will be in nucleophilic substitution. The order of strength of C-X bond is F>Cl>Br>I.
Hence, iodine displays the weakest C-X bond strength and it is thus, a very good leaving group in nucleophillic substitution while fluorine displays a very high C-X bond strength hence it is a bad leaving group in nucleophilic substitution.
Therefore, the ease of the use of halide ions as leaving groups follows the trend; Iodide> Bromide > chloride > flouride
C. protons and neutrons combined