Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>
Scientific investigations that involve some kind of testing will make use of observations. Generally speaking, making observations is the first step of the scientific method. Based on those observations, a question is asked, and then a hypothesis and prediction will be stated. A scientist will set up a test, observe the outcome, and collect data on the test. That will lead the scientist to some kind of conclusion relating to the initial question and hypothesis....
Answer:
The internal energy(ΔE) of a substance is calculated below:
From the first law of thermodynamics;
ΔE=q+w
Explanation:
<u>ΔE=q+w</u>
here;
+q=endothermic reaction
-q=exothermic reaction
+w=work done on the system
-w=work done by the system
Given:
q=+1.62kJ=1620J
w=-874J
To solve:
the internal energy(ΔE)
We know:
ΔE=q+w
<em>according to the problem;</em>
ΔE=q-w
since;
w=-874J (i.e.)work is done by the system.
ΔE=1620-874
ΔE=+746J
Therefore the internal energy is +746J
i.e. the option is "c"(+746J)