Right Atrium, Left Atrium, Pulmonary Trunk, Left Pulmonary Artery, Right Pulmonary Artery, Right Ventricle, Left Ventricle, Inferior Vena Cava, Superior Vena Cava, Acending Aorta, Aortic Arch, Apex, Left Pulmonary Veins, Right Pulmonary Veins, Brachiocepalic Artery, Ligamentum Arteriosum, Auricle, Left Common Carotoid Artery, Left Subclavian Artery, Anterior Cardiac Vein, Anterior Interventricular Artery, Left Coronary Artery (in coronary sulcus, left coronary groove), Great Cardiac Vein, Marginal Artery, Small Cardiac Vein, Right Coronary Artery (in coronary sulcus,Right coronary groove)
Here hope this helps:)
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²
Answer:
c). 
Explanation:
As we know that weight of the automobile is given here
so weight = mass times gravity



now from Newton's law




They are all elevated land forms.
Answer:
for part A the answer is D and for part B the answer is F