Answer:
Explanation:
The package had the same velocity as the plane when it was dropped. Newton's 1st Law says that "an object in motion tends to stay in motion, at the same velocity, in a straight line unless acted on by an outside force".
There only outside force acting on the package was its weight -- that force is straight down. The horizontal velocity that the plane gave the package continued (as Newton said it would), so as it fell, horizontally it kept pace with the plane.
Answer:
c. lumber
Explanation:
Lumber is considered a renewable natural resource because it is gotten from trees and trees are grow-able. A renewable natural resource is a resource which can be used repeatedly and replaced naturally. Examples of renewable natural resources are solar energy from the sun, water, oxygen, biomass, trees etc. Trees can be harvested and processed into lumber. The harvested trees can be planted again by humans or they can naturally reproduce through seedlings or fruits that drop and germinate on their own. This renewable germinating process of trees makes lumber a renewable natural resource.
Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Answer:
why compasses point towards the north and south poles of the earth.
Explanation:
hope it helps!!
Answer:
421.83 m.
Explanation:
The following data were obtained from the question:
Height (h) = 396.9 m
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
First, we shall determine the time taken for the ball to get to the ground.
This can be calculated by doing the following:
t = √(2h/g)
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 396.9 m
Time (t) =.?
t = √(2h/g)
t = √(2 x 396.9 / 9.8)
t = √81
t = 9 secs.
Therefore, it took 9 secs fir the ball to get to the ground.
Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:
Time (t) = 9 secs.
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
s = ut
s = 46.87 x 9
s = 421.83 m
Therefore, the horizontal distance travelled by the ball is 421.83 m