The isotopes of a particular element behave differently in nuclear reactions but the same in chemical reactions because the nuclear reactions involve changes to protons and neutrons in an atom and isotopes differ in neutrons and so they react differently to nuclear changes. While for chemical reactions, the electrons in an atom are involved but the isotopes do not differ in electrons and so they react the same way during chemical changes.
Answer: Option A & C
<u>Explanation:</u>
The reactants of chemical and nuclear reactions are different. The reactants of chemical reactions are the electrons present in the outermost shell of the reactants, while the reactants of nuclear reactions are either the nuclei of reactants or a nuclei and any subatomic particles of other reactants.
Thus it can be understood that chemical reactions consider the electrons while nuclear reactions consider the nuclei or the number of protons and neutrons of the reactants.
The isotopes of elements contain different mass number or we can say different number of neutrons but the number of electrons are same, so they behave differently in nuclear reactions and similar in chemical reactions.
Answer:
4054 kcal of heat is released during complete combustion of 354 g of octane.
Explanation:
Heat of combustion of 1 mol of octane is
kcal
Molar mass of octane = 114.23 g/mol
We know, no. of moles = (mass)/(molar mass)
So,
kcal of heat is released during complete combustion of 114.23 g of octane.
So, amount of heat is released during complete combustion of 354 g of octane =
kcal = 4054 kcal
Hence 4054 kcal of heat is released during complete combustion of 354 g of octane.
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
When CH₄ is burnt in excess O₂ following products are formed,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
According to equation 1 mole of CH₄ (16 g) reacts with 2 moles of O₂ to produce 1 mole of CO₂ and 2 moles of H₂O. Hence the products are,
1 mole of CO₂ and 2 moles of H₂O
Converting 1 mole CO₂ to grams;
As,
Mass = Moles × M.mass
Mass = 1 mol × 44 g.mol⁻¹
Mass = 40 g of CO₂
Converting 2 moles of H₂O to grams,
Mass = 2 mol × 18 g.mol⁻¹
Mass = 36 g of H₂O
Total grams of products;
Mass of CO₂ = 44 g
+ Mass of H₂O = 36 g
-------------
Total = 80 g of Product
Result:
80 grams of product is formed when 16 grams of CH₄ is burnt in excess of Oxygen.
Answer:
A reaction that combines simpler reactants to form a new compound is called a
<h2>Synthesis reaction.</h2>