Empirical formula is the simplest ratio of components making up the compound. the molecular formula is the actual ratio of components making up the compound.
the empirical formula is CH₂. We can find the mass of CH₂ one empirical unit and have to then find the number of empirical units in the molecular formula.
Mass of one empirical unit - CH₂ - 12 g/mol x 1 + 1 g/mol x 2 = 12 = 14 g
Molar mass of the compound is - 252 .5 g/mol
number of empirical units = molar mass / mass of empirical unit
= 
= 18 units
Therefore molecular formula is - 18 times the empirical formula
molecular formula - CH₂ x 18 = C₁₈H₃₆
molecular formula is C₁₈H₃₆
Answer:
2Na+F2 yields 2NaF is balanced.
Explanation:
There are 2 sodium and 2 fluorine in both reactants and product: In 2NaF the 2 is distributed because it is in the beginning of the compound.
Answer:
Option A = 2.2 L
Explanation:
Given data:
volume of one mole of gas = 22.4 L
Volume of 0.1 mole of gas at same condition = ?
Solution:
It is known that one mole of gas at STP occupy 22.4 L volume. The standard temperature is 273.15 K and standard pressure is 1 atm.
For 0.1 mole of methane.
0.1/1 × 22.4 = 2.24 L
0.1 mole of methane occupy 2.24 L volume.
Answer: X is a Solid; Y is a Gas
Explanation:
There are three (3) states of matter. They are: Solid, Liquid and Gases.
Substance X and Y, belong to the states of matter.
A Solid is a substance that retains its SIZE and SHAPE without need of a container (as opposed to a liquid or gas).
Thus, it will most likely be concluded that: substance X is a Solid; while Y is a Gas
Molar mass:
O2 = 31.99 g/mol
C8H18 = 144.22 g/mol
<span>2 C8H18(g) + 25 O2(g) = 16 CO2(g) + 18 H2O(g)
2 x 144.22 g --------------- 25 x 31.99 g
10.0 g ----------------------?? ( mass of O2)
10.0 x 25 x 31.99 / 2 x 144.22 =
7997.5 / 288.44 => 27.72 g of O2
hope this helps!
</span>