Answer:
c. can have a large cumulative effect
Explanation:
Noncovalent interactions between molecules are weaker than covalent interactions. Noncovalent interactions between molecules are of various types which include van der Waals forces, hydrogen bonding, and electrostatic interactions or ionic bonding.
van der Waals forces are weak interactions found in all molecules. They include dipole-dipole interactions - formed due to the differences in the electronegativity of atoms - and the London dispersion forces.
Hydrogen Bonds results when electrons are shared between hydrogen and a strongly electronegative atoms like fluorine, nitrogen, oxygen. The hydrogen acquires a partial positive charge while the electronegative atom acquires a partial negative. This results in attraction between hydrogen and neighboring electronegative molecules.
Ionic bonds result due to the attraction between groups with opposite electrical charges, for example in common salt between sodium and chloride ions.
Even though these noncovalent interactions are weak, cumulatively, they exert strong effect. For example, the high boiling point of water and the crystal structure of ice are due to hydrogen bonding.
There is acetone, xylene, and toluene in spray paint
I don’t see what you need help with but thanks:)
Answer:
The variables to be examined in relation to carbon dioxide use are the amount of light exposure and amount of dissolved CO2. Phenol red is yellow/orange under acidic conditions, that is when the pH of the solution is less than 7 (e.g. pH = 6). This occurs when the concentration of CO2 is high.
Explanation:
is this correct
When Lead (II) acetate and Hydrogen sulfide react, they form Lead sulfide and Acetic acid. The reaction is a reduction-oxidation (redox) reaction.
The balanced chemical reaction is this:
Pb(C2H3O2)2 + H2S --> PbS + 2C2H4O2
And the net ionic reaction is this:
Pb2+ + S2- --> PbS