Answer:
1. The gas law used: Dalton's law of partial pressure.
2. Pressure of nitrogen = 331 mmHg
Explanation:
From the question given above, the following data were obtained:
Total pressure (Pₜ) = 592 mmHg
Pressure of Oxygen (Pₒ) = 261 mmHg
Pressure of nitrogen (Pₙ) =?
The pressure of nitrogen in the sample can be obtained by using the Dalton's law of partial pressure. This is illustrated below:
Pₜ = Pₒ + Pₙ
592 = 261 + Pₙ
Collect like terms
592 – 261 = Pₙ
331 = Pₙ
Pₙ = 331 mmHg
Therefore, the pressure of nitrogen in the sample is 331 mmHg
Answer:
Do research on a Particular topic
1) Calcium carbonate contains 40.0% calcium by weight.
M(CaCO₃)=100.1 g/mol
M(Ca)=40.1 g/mol
w(Ca)=40.1/100.1=0.400 (40.0%)!
2) Mass fraction of this is excessive data.
3) The solution is:
m(Ca)=1.2 g
m(CaCO₃)=M(CaCO₃)*m(Ca)/M(Ca)
m(CaCO₃)=100.1g/mol*1.2g/40.1g/mol=3.0 g
The p sublevel holds 6 electrons because it has 3 orbitals.
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.