Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is:
The correct answer to the problem is 0.193 which is three significant figures.
<h3>What are significant figures?</h3>
The term significant figures has to do with the figures that have a mathematical meaning. We know that the result has to correspond to the highest number of significant figures.
Hence, If we multiply 0.34 x 0.568 the result ought to be recorded as 0.193 which is three significant figures.
Learn more about significant figures:brainly.com/question/14804345
#SPJ1
Periodic Trend:
The Atomic radius of atoms generally decreases from left to right across a period
Group Trend:
The atomic radius of atoms generally increases from top to bottom within a group. As atomic number increases down a group, there is a increase in the positive nuclear charge, however the co-occurring increase in the number of orbitals wins out, increasing the atomic radius down a group in the periodic table
Answer :
The Atom with the greatest atomic radius is chlorine. Fluorine can be ruled out because it is in the same period as oxygen and further to the right down the period. Chlorine has the largest atomic size because it is farthest down the group of any of the above elements listed.
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles