Since you forgot to include the choices for classification, I would just define each of these and tell you the hints that would help you classify them.
Among these acids and bases, its is the strong acids and strong bases that are easily classified. You should note that there are only 7 strong acids existing. All the rest are weak acids. These 7 acids are: HCl, HBr, HI, HClO₃, HClO₄, HNO₃ and H₂SO₄. On the other hand, there are only 8 strong bases; the rest are weak bases. These are the hydroxides of the Group ! and !! metals: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, and Br(OH)₂.
For the weak acids and weak bases, just remember the definitions of Arrhenius, Lewis and Bronsted-Lowry. A weak base are those compounds that accept H⁺ protons, produce OH⁻ ions when solvated and an electron donor. A weak acid are those compounds that donate H⁺ protons, produce H⁺ ions when solvated and an electron acceptor.
To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters. Note that the volume is in liters of solution and not liters of solvent. When a molarity is reported, the unit is the symbol M and is read as “molar”.
I hope this helped :)
Please make me the branliest! Have a good night/ good day!!
Answer:
A. 32.06 g/mol
Explanation:
The molar mass units are always g/mol
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
<h3>A neutral (no charge) particle found in the nucleus of an atom. ... The atomic number of an atom is equal to the number of protons or neutrons? false. The atomic number is always equal to the atomic mass.</h3>