Answer:
y= -1\2x-4
Step-by-step explanation:
y=mx+c
perpinicular means you flip the slop and change the sign so the slope(m) become -1\2
y=-1\2x+c
since he gives you (8,-8) meaning x=8 and y= -8
we substitute
-8=(-1\2 x 8) +c
now we isolate c
-8+4=c
c=-4
the equation will be
y= -1\2x-4
Answer:
The units are always squared. The area can be found when given the diameter by first finding the radius. Circumference can be used to find area.
Step-by-step explanation:
Answer:
He did not
Step-by-step explanation:
if you put 6: 8 in a fraction 6/8, it doesn't have any relationship with 9/12
Answer: Third Option

Step-by-step explanation:
We have the following exponential equation

We must solve the equation for the variable x
To clear the variable x apply the
function on both sides of the equation

Simplifying we get the following:

To simplify the expression
we apply the base change property

This means that:

Then:



Check the picture below.
since the vertical distance, namely the y-coordinate, is twice as much as the horizontal, then if the horizontal is "x", the vertical one must be 2x.
let's find the hypotenuse first.
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=\stackrel{adjacent}{x}\\ b=\stackrel{opposite}{2x}\\ \end{cases} \\\\\\ c=\sqrt{x^2+(2x)^2}\implies c=\sqrt{x^2+4x^2}\implies c=\sqrt{5x^2}\implies c=x\sqrt{5} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7Bx%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B2x%7D%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7Bx%5E2%2B%282x%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7Bx%5E2%2B4x%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B5x%5E2%7D%5Cimplies%20c%3Dx%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{2~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }}{\stackrel{hypotenuse}{~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ \sqrt{5}}}\implies \stackrel{\textit{and rationalizing the denominator}~\hfill }{\cfrac{2}{\sqrt{5}}\cdot \cfrac{\sqrt{5}}{\sqrt{5}}\implies \cfrac{2\sqrt{5}}{(\sqrt{5})^2}\implies \cfrac{2\sqrt{5}}{5}}](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B2~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%5Csqrt%7B5%7D%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Band%20rationalizing%20the%20denominator%7D~%5Chfill%20%7D%7B%5Ccfrac%7B2%7D%7B%5Csqrt%7B5%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%7B5%7D%7D%7B%5Csqrt%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B%28%5Csqrt%7B5%7D%29%5E2%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B5%7D%7D)