Yes since 1/8 is equal to 4/32
There are two ways to do this but the way I prefer is to make one of the equations in terms of one variable and then 'plug this in' to the second equation. I will demonstrate
Look at equation 1,

this can quite easily be manipulated to show

.
Then because there is a y in the second equation (and both equations are simultaneous) we can 'plug in' our new equation where y is in the second one

which can then be solved for x since there is only one variable

and then with our x solution we can work out our y solution by using the equation we manipulated

.
So the solution to these equations is x=-2 when y=6
Answer:
4
Step-by-step explanation:
Given
x² - 4x + 10 = 0
subtract 10 from both sides
x² - 4x = - 10
To complete the square
add ( half the coefficient of the x- term )² to both sides
x² + 2(- 2)x + 4 = - 10 + 4
(x - 2)² = - 6
To complete the square add 4
Answer:
(-3, 13)
Step-by-step explanation:
The transformation that moves a point 4 left and 8 up is ...
(x, y) ⇒ (x -4, y +8)
The transformation that reflects a point across the y-axis is ...
(x, y) ⇒ (-x, y)
Applied after the translation, the transformation of ∆ABC becomes ...
(x, y) ⇒ (-(x -4), y +8) = (4 -x, y +8)
Then point A gets moved to ...
A(7, 5) ⇒ A'(4 -7, 5 +8) = (-3, 13)