1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
3 years ago
6

Jessie bought f bags of potting soil for $2.00 each. Write an expression to show how much Jessie paid.

Mathematics
1 answer:
pav-90 [236]3 years ago
8 0
I believe it is x = 2f

Happy studying
You might be interested in
Help answer fast!! Please
Karo-lina-s [1.5K]
It might be 90in

Because it’s asking if the prism below
5 0
3 years ago
What is 1.3742 rounded to the nearest tenth?
REY [17]

Answer:

1.4 that is the true answer

Step-by-step explanation:

go to the place right after the decimal and then look at the number next to it.if it is greater the 5 it goes up to 1.4 and it is

6 0
2 years ago
How do you solve this (5/6)(5/6)
Vikentia [17]

Answer:

25/36

Step-by-step explanation:

Use the top top, bottom bottom method.

5*5 = 25

6*6 = 36

6 0
3 years ago
Read 2 more answers
Is this right??? Please answer
lesya692 [45]

Answer:Yes its correct!(good job)

Step-by-step explanation:If you want to doubule check just count the tens carefully and if your still sketchy about it just cir cle the ones you counted hope this helped!

7 0
3 years ago
Read 2 more answers
A random sample of n = 64 observations is drawn from a population with a mean equal to 20 and standard deviation equal to 16. (G
dezoksy [38]

Answer:

a) The mean of a sampling distribution of \\ \overline{x} is \\ \mu_{\overline{x}} = \mu = 20. The standard deviation is \\ \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}}=2.

b) The standard normal z-score corresponding to a value of \\ \overline{x} = 16 is \\ Z = -2.

c) The standard normal z-score corresponding to a value of \\ \overline{x} = 23 is \\ Z = 1.5.

d) The probability \\ P(\overline{x}.

e) The probability \\ P(\overline{x}>23) = 1 - P(Z.

f)  \\ P(16 < \overline{x} < 23) = P(-2 < Z < 1.5) = P(Z.

Step-by-step explanation:

We are dealing here with the concept of <em>a sampling distribution</em>, that is, the distribution of the sample means \\ \overline{x}.

We know that for this kind of distribution we need, at least, that the sample size must be \\ n \geq 30 observations, to establish that:

\\ \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})

In words, the distribution of the sample means follows, approximately, a <em>normal distribution</em> with mean, \mu, and standard deviation (called <em>standard error</em>), \\ \frac{\sigma}{\sqrt{n}}.

The number of observations is n = 64.

We need also to remember that the random variable Z follows a <em>standard normal distribution</em> with \\ \mu = 0 and \\ \sigma = 1.

\\ Z \sim N(0, 1)

The variable Z is

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} [1]

With all this information, we can solve the questions.

Part a

The mean of a sampling distribution of \\ \overline{x} is the population mean \\ \mu = 20 or \\ \mu_{\overline{x}} = \mu = 20.

The standard deviation is the population standard deviation \\ \sigma = 16 divided by the root square of n, that is, the number of observations of the sample. Thus, \\ \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}}=2.

Part b

We are dealing here with a <em>random sample</em>. The z-score for the sampling distribution of \\ \overline{x} is given by [1]. Then

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ Z = \frac{16 - 20}{\frac{16}{\sqrt{64}}}

\\ Z = \frac{-4}{\frac{16}{8}}

\\ Z = \frac{-4}{2}

\\ Z = -2

Then, the <em>standard normal z-score</em> corresponding to a value of \\ \overline{x} = 16 is \\ Z = -2.

Part c

We can follow the same procedure as before. Then

\\ Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ Z = \frac{23 - 20}{\frac{16}{\sqrt{64}}}

\\ Z = \frac{3}{\frac{16}{8}}

\\ Z = \frac{3}{2}

\\ Z = 1.5

As a result, the <em>standard normal z-score</em> corresponding to a value of \\ \overline{x} = 23 is \\ Z = 1.5.

Part d

Since we know from [1] that the random variable follows a <em>standard normal distribution</em>, we can consult the <em>cumulative standard normal table</em> for the corresponding \\ \overline{x} already calculated. This table is available in Statistics textbooks and on the Internet. We can also use statistical packages and even spreadsheets or calculators to find this probability.

The corresponding value is Z = -2, that is, it is <em>two standard units</em> <em>below</em> the mean (because of the <em>negative</em> value). Then, consulting the mentioned table, the corresponding cumulative probability for Z = -2 is \\ P(Z.

Therefore, the probability \\ P(\overline{x}.

Part e

We can follow a similar way than the previous step.

\\ P(\overline{x} > 23) = P(Z > 1.5)

For \\ P(Z > 1.5) using the <em>cumulative standard normal table</em>, we can find this probability knowing that

\\ P(Z1.5) = 1

\\ P(Z>1.5) = 1 - P(Z

Thus

\\ P(Z>1.5) = 1 - 0.9332

\\ P(Z>1.5) = 0.0668

Therefore, the probability \\ P(\overline{x}>23) = 1 - P(Z.

Part f

This probability is \\ P(\overline{x} > 16) and \\ P(\overline{x} < 23).

For finding this, we need to subtract the cumulative probabilities for \\ P(\overline{x} < 16) and \\ P(\overline{x} < 23)

Using the previous <em>standardized values</em> for them, we have from <em>Part d</em>:

\\ P(\overline{x}

We know from <em>Part e</em> that

\\ P(\overline{x} > 23) = P(Z>1.5) = 1 - P(Z

\\ P(\overline{x} < 23) = P(Z1.5)

\\ P(\overline{x} < 23) = P(Z

\\ P(\overline{x} < 23) = P(Z

Therefore, \\ P(16 < \overline{x} < 23) = P(-2 < Z < 1.5) = P(Z.

5 0
3 years ago
Other questions:
  • Sum of finite geometric series three triangles
    6·1 answer
  • saima makes 14 muffins to give to her friends she wants to give 2 muffins to each friends at her party​
    14·1 answer
  • how large is the acceleration of a 60 kg runner if the friction between her shoes and the pavement is 500 n?
    5·1 answer
  • A rectangle has width w inches and height h inches, where the width is twice the height. Both w and h are functions of time t, m
    8·1 answer
  • If tan x=2021<br> x=20/21 <br> and <br> π&lt; x &lt; 3π/2<br> what is cos⁡(x+π/2)?
    6·1 answer
  • The quotient of 8 and twice a number z
    9·1 answer
  • -6/5<br> A. irrational<br> B. rational<br> C. integer<br> D. natural
    7·1 answer
  • A 4-inch by 7-inch image was proportionally enlarged as shown. What is the length of the unmeasured side?
    5·1 answer
  • Solve by elimination <br> 3x+2y=19<br> -9x+8y=-29
    6·1 answer
  • If the original point A (3,5) is rotated 180 degrees what will the image point be​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!