1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
5

Y=2cos3x How do I graph this with labels in radians

Mathematics
1 answer:
aleksandrvk [35]3 years ago
3 0

Answer:

Linked an image

Step-by-step explanation:

Okay, basically since it is y=2co3x you know that the amplitude is 2, so rather than going to +1 and -1, you now go to +2 and -2.  Since it's cosine, you also know that you start at the maximum rather than the intercept, so the starting point is at (0,2).  

I'm assuming that you need to graph 2 periods, and to find the periods you divide 2pi/b, so, in this case, 2pi/3

Then lastly you need to find the four points between 0 and 2pi/3, so you divide 2pi/3/4 to get 2pi/12=pi/6

If you have any other questions just comment and I'll respond when I see it.

You might be interested in
Evaluate exactly in radians: arctan(1/sqrt(3)).
Alexeev081 [22]
   
\displaystyle  \\ 
 \frac{1}{ \sqrt{3} } = \frac{\sqrt{3}}{ \sqrt{3}  \times \sqrt{3}} = \frac{\sqrt{3}}{ 3}  \\  \\ 
\arctan\left(\frac{\sqrt{3}}{ 3} \right) = \arctan(\tan 30^o) = \boxed{30^o}



7 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Shauna spent $175 on a pair of shoes.She spent 1/9 of the remaining money on a shirt.If he still had 4/7of his moneyleft,how muc
KIM [24]

Answer:

$490

Step-by-step explanation:

Shauna spent $175 on a pair of shoes.

She spent 1/9 of the remaining money on a shirt.

If he still had 4/7 of his money left,how much did he have at first ?

Solution:

Let at first, Shauna have = x

Money spent on a pair of shoes = $175

Remaining money = x-175

<u>As she spent 1/9 of the remaining money on a shirt.</u>

Money spent on shirt = \frac{1}{9} \times(x-175)=\frac{x}{9} -\frac{175}{9}

As he still had \frac{4}{7} of his money left:-

Money left = \frac{4}{7}\ of\ his\ money=\frac{4x}{7}

Money left with Shauna = Total money, she had at first -(Money spent on a pair of shoes + Money spent on shirt )

\frac{4x}{7} =x-(175+{\frac{x}{9} -\frac{175}{9} )\\\\\\

\frac{4x}{7} =x-(\frac{175}{1} -\frac{175}{9} +\frac{x}{9} )\\\\ \frac{4x}{7} =x-(\frac{1575-175}{9} +\frac{x}{9} )\\\\ \frac{4x}{7}=x-(\frac{1400}{9} +\frac{x}{9} )\\ \\ \frac{4x}{7}=x-\frac{1400}{9} -\frac{x}{9}

Subtracting both sides by x and adding both sides by \frac{x}{9}

\frac{4x}{7} -x+\frac{x}{9} =-\frac{1400}{9} -x+\frac{x}{9} +x-\frac{x}{9}

Taking LCM of 7 and 9, we get 63

\frac{36x-63x+7x}{63} =-\frac{1400}{9} \\ \\ -\frac{20x}{63}=-\frac{1400}{9}

Adding both side by -

\frac{36x-63x+7x}{63} =-\frac{1400}{9} \\ \\ \frac{20x}{63}=\frac{1400}{9}

By cross multiplication:

20x\times9=1400\times63\\180x=88200\\

Dividing both sides by 180

x=490

Therefore, total $490, she had at first.

3 0
4 years ago
I need to know this asap!
Vinvika [58]

w+2x=16 ⇒ w=16-2x


x+2w=14        x+2(16-2x)=14

                      x+32-4x=14

                     -3x=14-32

                      -3x=-18  /:(-3)

                       x=6


w=16-2x=16-2·6=16-12=4


2y+w=-6 ⇒   2y+4=-6

                   2y=-6-4

                   2y=-10  /:2

                   y=-5

4 0
3 years ago
4(g-1)=24 what is g please help
denis23 [38]

Answer:

G=7

Step-by-step explanation:

4(g-1)=24

4g-4=24

4g=28

g=7

3 0
3 years ago
Read 2 more answers
Other questions:
  • Lines a and b are parallel. line c is perpendicular to both line a and line B. Which statement about lines a,b and C is not true
    15·2 answers
  • What are the steps to get x
    12·1 answer
  • 4) Find the perimeter of the following triangle<br> 2x+8<br> 25x-3<br> 3+x
    6·1 answer
  • What’s a 10 percent of 100
    5·1 answer
  • Find the maximum and minimum values attained by the function f along the path c(t). (a) f(x, y) = xy; c(t) = (cos(t), sin(t)); 0
    8·2 answers
  • Find the missing angle according to the Triangle Sum Theorem.
    7·1 answer
  • Math question part 2 please help
    12·2 answers
  • The volume of gas a balloon can hold varies directly as the cube of its radius. Imagine a balloon with a radius of 4 inches can
    10·1 answer
  • Pleas help grade depends on it
    10·2 answers
  • Could i have some quick quick help?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!