Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
Total resistance=R1+ R2= 6Ω
Voltage=12v
Current =

Current= 2A
In a series circuit, equal current passes through every resistance.
Answer is option A
The statement that is the most true regarding the states of matter is the first statement.
A. Most matter on Earth exists as a solid, liquid, or gas.
This is correct since most of the matter on Earth exists in those 3 states, meanwhile plasma is not a state that most of matter on earth is found in since it is mostly associated to stars and the external galactic regions.
Therefore, B is incorrect.
C is false, since almost of all of the matter on earth can transform and change through each of the 3 states of matter, solid, liquid, and gas.
D is false since most of the matter in universe is actually made out of plasma instead of a liquid. In fact, over 99% of the known universe's matter is said to consist of plasma.
5-ohm
Extra
Variable
120-ohm
Variable
Pg. 614