Answer:
y=1/3x+2
Step-by-step explanation:
to put it in y=mx+b slope is m and b is the y intercept
Answer:
a= 22.5
b= 37.5
Step-by-step explanation:
<u>In</u><u> </u><u>△</u><u>BCD</u><u>:</u>
Applying Pythagoras' Theorem,
a² +30²= b²
a² +900= b² -----(1)
<u>In</u><u> </u><u>△</u><u>ABC</u><u>:</u>
Applying Pythagoras' Theorem,
b² +50²= (40 +a)² -----(2)
Substitute (1) into (2):
a² +900 +50²= 40² +2(40)(a) +a²<em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>expand</em><em> </em><em>bracket</em><em>)</em>
a² +900 +2500= 1600 +80a +a²
a² +3400= a² +80a +1600 <em>(</em><em>simplify</em><em>)</em>
a² +3400 -a² -80a -1600= 0 <em>(</em><em>bring</em><em> </em><em>everything</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>)</em>
-80a +1800= 0
80a= 1800 <em>(</em><em>+</em><em>8</em><em>0</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
a= 1800 ÷80
a= 22.5
Subst. a= 22.5 into (1):
22.5² +900= b²
b²= 506.25 +900
b²= 1406.25
b= √1406.25 <em>(</em><em>square</em><em> </em><em>root</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
b= 37.5 <em>(</em><em>reject</em><em> </em><em>negative</em><em> </em><em>value</em><em> </em><em>since</em><em> </em><em>b</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>length</em><em>)</em>
☆(a +b)²= a² +2ab +b²
Answer:
A
Step-by-step explanation:
Draw an angle of 15° like this (∠) on a piece of paper, label this angle J, extend the base of the triangle and label the hypotenous 11cm (JK). Do you get the solution now? If no, here is an explanation.
This problem can be explained with sin law,
[Assume KL = 4cm]
(sin15)/4 = (sinL)/11
L = 45.4° or 135° (3 sig. fig.)
Since we got 2 possible case for the angle L, there are two possible set of triangles. Hope this will help you understand more about the problem, comment below if you still have any questions.
You have not provided the options, therefore, I can not provide an exact answer.
However, I will help you with the concept
In a triangle, the circumcenter is defined as the point of intersection of the three perpendicular bisectors in the triangle
The circumcenter is characterized by the following:
1- The circumcenter is the center point of the circumcircle
2- The circumcenter is equidistant from the three vertices of the triangle
<u>3- Position of circumcenter:</u>
in acute triangle ........> it lies inside the triangle
in right-angles triangle .......> it lies at the midpoint of the hypotenuse
in obtuse triangle ..........> it lies outside the triangle
Hope this helps :)