Real number, rational number
Answer:
a)
b) ![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
c)
Step-by-step explanation:
1) Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
2) Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Part a
Part b
![P(X> 2)=1-P(X\leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D)
![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
Part c
We know that
case 1)
Applying the law of sines
a/Sin A=b/Sin B
A=56°
a=12
b=14
so
a*Sin B=b*Sin A----> Sin B=b*Sin A/a---> Sin B=14*Sin 56°/12
Sin B=0.9672
B=arc sin (0.9672)------> B=75.29°-----> B=75.3°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+75.3)----> C=48.7°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 48.7°/Sin 56°)
c=10.87-----> c=10.9
the answer Part 1)
the dimensions of the triangle N 1
are
a=12 A=56°
b=14 B=75.3°
c=10.9 C=48.7°
case 2)
A=56°
a=12
b=14
B=180-75.3----> B=104.7°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+104.7)----> C=19.3°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 19.3°/Sin 56°)
c=4.78-----> c=4.8
the answer Part 2)
the dimensions of the triangle N 2
are
a=12 A=56°
b=14 B=104.7°
c=4.8 C=19.3°
Multiply all the numbers of options together, so 5x3x4 to get 60 possible outfits.