Answer: here
Step-by-step explanation:riangles QST and RST are similar. Therefore, the following is true:
q s
--- = ---- This results in 10q=rs.
r 10
Also, since RST is a right triangle, 4^2 + s^2 = q^2.
Since QST is also a right triangle, s^2 + 10^2 = r^2.
4 s
Also: ---- = ----- which leads to s^2 = 40
s 10
Because of this, 4^2 + s^2 = q^2 becomes 16 + 40 = 56 = q^2
Then q = sqrt(56) = sqrt(4)*sqrt(14) = 2*sqrt(14) (answer)
hope it helps
Answer:
24%
Step-by-step explanation:
I think this is right. im sorry if its not but i went to a percent calculator and checked my answer. hope this helped :)
Answer:
One
Step-by-step explanation:
It is given that,
y = 3x-5 ....(1)
y = -x+4 .....(2)
We can solve the above equations using substitution method. Put the value of y from equation (1) to equation (2) such that,

Put the value of x in equation (1) we get :

It means that the value of x is
and the value of y is
. Hence, the given equations has only one solution.
Answer:
The finish line
Step-by-step explanation:
Jonas is planning his trip using the finish line as reference point. He is using an interval scale (using meters as measurement) and the finish line = 0 meters or the starting point. Anything before the finish is negative and anything after is positive. In this case, his wife is located at 91 + 14 = 105 meters away from him. When you use an interval scale to measure distance, you must use absolute values to determine the distance because positive and negative points.
<span>(1 + cos² 3θ) / (sin² 3θ) = 2 csc² 3θ - 1
Starting with the left: Note that cos²θ + </span><span>sin²θ = 1.
In the same way: </span><span>cos²3θ + <span>sin²3θ = 1
</span></span>Therefore cos²3θ = 1 - <span>sin²3θ
</span> From the top: (1 + cos² 3θ) = 1 + 1 - sin²3θ = 2 - <span>sin²3θ
</span>
(1 + cos² 3θ) / (sin² 3θ) = (<span>2 - sin²3θ) / (sin² 3θ) = 2/</span><span>sin² 3θ - </span><span>sin²3θ/</span>sin²3θ
= 2/<span>sin² 3θ - 1; But 1/</span><span>sinθ = csc</span><span>θ, Similarly </span>1/sin3θ = csc3θ
= 2 *(1/sin<span>3θ)² - 1</span>
= 2csc²3θ - 1. Therefore LHS = RHS. QED.