Answer:
4:24 p.m.
Step-by-step explanation:
Figure out how often the buses leave at the same time. This is the same as the least common multiple (LCM) of how often they leave the stadium.
The LCM is found by multiplying the maximum number of each prime factor found in any of the numbers.
The prime factors of a number are found by dividing it by whole numbers until the factors are all prime. Prime numbers only have the factors 1 and itself.
6 = 2 X 3
8 = 2 X 2 X 2
The greatest times 2 repeats is three times.
The greatest times 3 repeats is one time.
2 X 2 X 2 X 3 = 24
The LCM is 24, and the buses have the same leaving times every 24 minutes.
Find 24 minutes after 4:00 p.m. Change the minutes only, which are the numbers right of the colon : .
The buses will next leave together at 4:24 p.m.
Just remove the parenthesis since you are adding them and combine like terms
x+5+2x+3
3x+8
The answers are that the number can equal -4 or 1.
You can find this by setting the number equal to x.
x^2 (The square of a number) + 3x (three times a number) = 4
x^2 + 3x = 4 ---> subtract 4 from each side
x^2 + 3x - 4 = 0
Then you can factor this to find the answers
(x - 4)(x + 1) = 0
Set both equal to 0 and solve.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
<span>\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span></span></span></span></span>