Answer:
D. H₂SO₄
Explanation:
Bronsted acids are those that donate H+ ions. In this question, H₂SO₄ is a Bronsted acid.
Note: H₂SO₄ is one of seven strong acids that you should try to memorize.
Answer:
A/1. 10.9 mol O2
Explanation:
583 g x 1 mol SO3 x 3 mol O2 /
80.057 g mol SO3 x 2 mol SO3
- You just need to find molar mass of SO3, which is 80.057 g.
- Everything else came from formula. Further explanation...
- Always start with what they give, such as 583 g. Then find 1 mol of what is being produced, in this it is SO3. We already found this because we did molar mass above. Next. find how many moles of what they want, which is O2. Look in equation and you can see 3 mol in from of O2. Next, do the same for SO3 and you can find 3 mol in front of that. Lastly, just do the math.
- If you need a further explanation or more help on any problems I would be happy to help, just let me know.
Answer:
Metals have one or two electrons in their outermost shell
C. 1-2
Explanation:
- Metals have low ionisation energy because they easily looses the outermost electrons
- They have only one- two electrons in the outer most shell.
- They loose these electron to form charged species called cation.
The molar concentration of the original HF solution : 0.342 M
Further explanation
Given
31.2 ml of 0.200 M NaOH
18.2 ml of HF
Required
The molar concentration of HF
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence (amount of H⁺/OH⁻, for NaOH and HF n =1)
Titrant = NaOH(1)
Titrate = HF(2)
Input the value :
