H+ ions are proton charged ions that are present
Explanation:
Let the volume of the solution be 100 ml.
As the volume of glycol = 50 = volume of water
Hence, the number of moles of glycol = 
= 
= 
= 0.894 mol
Hence, number of moles of water = 
= 2.77
As glycol is dissolved in water.
So, the molality = 
= 17.9
Therefore, the expected freezing point = 
= 
Thus, we can conclude that the expected freezing point is
.

Explanation:
the bottom number would be 54. This is because you add one to 53 to make it 54 and you add 0 to 138.
Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ