Answer:
The equation of the line we want to write is 4y = -x + 22
Step-by-step explanation:
Here, we want to write the equation of a line
.
The standard equation of a straight line is given as:
y = mx + c
where m is the slope and c represents the y-intercept
Now, let’s look at the line y = 4x + 16
The slope of this line is 4
Now, the equation of the line we want to write is perpendicular to this line
When two lines are perpendicular, the product of their slopes = -1
Hence;
m * 4 = -1
m = -1/4
So the slope of the line we want to write is -1/4
Now, using the point-slope form for the new equation;
y-y1/x-x1 = m
From the point given (x1,y1) = (10,3)
Thus;
y-3/x-10 = -1/4
4(y-3) = -1(x - 10)
4y - 12 = -x + 10
4y = - x + 10 + 12
4y = -x + 22
Answer:
<h2>
![7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
</h2>
Solution,
![7( \sqrt[3]{2x} ) - 3( \sqrt[3]{16x} ) - 3( \sqrt[3]{8x} ) \\ = 7 \sqrt[3]{2x} - 3 \times ( \sqrt[3]{2 \times 2 \times 2 \times 2x} - 3 \times \sqrt[3]{2 \times 2 \times 2x} \\ = 7 \sqrt[3]{2x} - 3 \times (2 \sqrt[3]{2} x) - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 3 \times 2 \times \sqrt[3]{2x} - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%28%20%5Csqrt%5B3%5D%7B2x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B16x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B8x%7D%20%29%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%28%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20-%203%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%282%20%5Csqrt%5B3%5D%7B2%7D%20x%29%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
Hope this helps...
Good luck on your assignment...