The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
9.73 x 10⁻¹⁰ m
Explanation:
According to Heisenberg uncertainty principle
Uncertainty in position x uncertainty in momentum ≥ h / 4π
Δ X x Δp ≥ h / 4π
Δp = mΔV
ΔV = Uncertainty in velocity
= 2 x 10⁻⁶ x 3 / 100
= 6 x 10⁻⁸
mass m = 0.9 x 10⁻¹⁵ x 10⁻³ kg
m = 9 x 10⁻¹⁹
Δp = mΔV
= 9 x 10⁻¹⁹ x 6 x 10⁻⁸
= 54 x 10⁻²⁷
Δ X x Δp ≥ h / 4π
Δ X x 54 x 10⁻²⁷ ≥ h / 4π
Δ X = h / 4π x 1 / 54 x 10⁻²⁷
= 
= 9.73 x 10⁻¹⁰ m
Answer:
I don’t understand Espanol
Explanation:
sorry