Answer:

Step-by-step explanation:
<u>Exponential Function</u>
When we need to express the exponential relation between two variables, we use the equation

where C, r are constants to be determined by using the given points from the table
For x=0, y=2, thus

We find that C=2
The equation is now

Now we use the point x=1, y=1

We find that

Thus, the equation is

Rearranging

The required equation is

We can easily verify the last two points are also obtained by using the equation
-17.35 bc he said no to the yes to the no no no
Answer:
1/3
Step-by-step explanation:
Answer:
Step-by-step explanation:Let's solve for c.
x2+10x+c=−3+c
Step 1: Add -c to both sides.
x2+c+10x+−c=c−3+−c
x2+10x=−3
Step 2: Add -x^2 to both sides.
x2+10x+−x2=−3+−x2
10x=−x2−3
Step 3: Add -10x to both sides.
10x+−10x=−x2−3+−10x
0=−x2−10x−3
Step 4: Divide both sides by 0.
0
0
=
−x2−10x−3
0
c=
−x2−10x−3
0
Answer:
c=
−x2−10x−3/0
hope it helps :D
tan²(<em>θ</em>) - sin²(<em>θ</em>) = sin²(<em>θ</em>)/cos²(<em>θ</em>) - sin²(<em>θ</em>)
-- because tan(<em>θ</em>) = sin(<em>θ</em>)/cos(<em>θ</em>) by definition of tangent --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - 1)
-- we pull out the common factor of sin²(<em>θ</em>) from both terms --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - cos²(<em>θ</em>)/cos²(<em>θ</em>))
-- because <em>x</em>/<em>x</em> = 1 (so long as <em>x</em> ≠ 0) --
… = sin²(<em>θ</em>) ((1 - cos²(<em>θ</em>))/cos²(<em>θ</em>))
-- we simply combine the fractions, which we can do because of the common denominator of cos²(<em>θ</em>) --
… = sin²(<em>θ</em>) (sin²(<em>θ</em>)/cos²(<em>θ</em>))
-- due to the Pythagorean identity, sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1 --
… = sin²(<em>θ</em>) tan²(<em>θ</em>)
-- again, by definition of tan(<em>θ</em>) --