<span><span>N2</span><span>O3</span><span>(g)</span>→NO<span>(g)</span>+<span>NO2</span><span>(g)</span></span>
<span><span>[<span>N2</span><span>O3</span>]</span> Initial Rate</span>
<span>0.1 M r<span>(t)</span>=0.66</span> M/s
<span>0.2 M r<span>(t)</span>=1.32</span> M/s
<span>0.3 M r<span>(t)</span>=1.98</span> M/s
We can have the relationship:
<span>(<span><span>[<span>N2</span><span>O3</span>]/</span><span><span>[<span>N2</span><span>O3</span>]</span>0</span></span>)^m</span>=<span><span>r<span>(t)/</span></span><span><span>r0</span><span>(t)
However,
</span></span></span>([N2O3]/[N2O3]0) = 2
Also, we assume m=1 which is the order of the reaction.
Thus, the relationship is simplified to,
r(t)/r0(t) = 2
r<span>(t)</span>=k<span>[<span>N2</span><span>O3</span>]</span>
0.66 <span>M/s=k×0.1 M</span>
<span>k=6.6</span> <span>s<span>−<span>1</span></span></span>
- Frequency=v=2×10^15Hz
- Energy=E
Using planks quantum theory




Answer:

Explanation:
Hello,
In this case, for the given chemical reaction, we first identify the limiting reactant by noticing that due to the 1:1 mole ratio for magnesium to iodine the reacting moles must the same, nevertheless, there are only 2.68 moles of magnesium versus 3.56 moles of iodine, for that reason, magnesium is the limiting reactant, so the theoretical turns out:

Thus, we compute the percent yield as:

Best regards.
Answer:Label the parts of this wave.
A:
✔ crest
B:
✔ amplitude
C:
✔ trough
D:
✔ wavelength
Explanation:
Answer:
Provide more strength
Explanation:
Rust is metal that has been oxidised . Oxides are usually more fragile and porous than their crystals metal equivalents. Some oxides, such as Aluminum oxide, are useful because they have a thin, strong shell that protects the metal from further corrosion.