Answer / explanation:
How does concentration affect boiling point of a solvent?
The amount by which the boiling point is raised is directly dependent on the concentration of the solute.
The higher the concentration of a solute, the more it is said to be difficult for the solvent molecules to escape into the gas phase.
However, when a non volatile amount of substance is dissolved in a given solvent, the boiling point of the given solvent increases.
The higher the concentration, the more higher the boiling point of a solvent.
It requires a higher temperature for enough solvent molecules to escape , this the boiling point is raised elevatedly
Answer:
145.8g
Explanation:
Given parameters:
Number of moles of magnesium hydroxide = 2.5mol
Unknown:
Mass of Mg(OH)₂ = ?
Solution:
To solve this problem we use the expression below;
Mass of Mg(OH)₂ = number of moles x molar mass
Molar mass of Mg(OH)₂ = 24.3 + 2(16 + 1) = 58.3g/mol
Mass of Mg(OH)₂ = 2.5 x 58.3 = 145.8g
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.
The answer to the question is letter b